Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.287
Filtrar
1.
Cells ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607049

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Assuntos
Dictyostelium , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Dictyostelium/metabolismo , Canais de Cátion TRPP/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cálcio/metabolismo
2.
Biochem Soc Trans ; 52(2): 567-580, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629621

RESUMO

The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.


Assuntos
Homeostase , Fosfatos de Inositol , Polifosfatos , Polifosfatos/metabolismo , Animais , Fosfatos de Inositol/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Dictyostelium/metabolismo , Transdução de Sinais
3.
Cells ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38391954

RESUMO

The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Membrana Celular/metabolismo , Actinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339168

RESUMO

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Assuntos
Glucose , Malato Desidrogenase , Animais , Humanos , Camundongos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adenilato Quinase/metabolismo , Dictyostelium/metabolismo , Glucose/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/metabolismo , Mamíferos/metabolismo
5.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334655

RESUMO

Dictyostelium myosin II displays remarkable dynamism within the cell, continually undergoing polymerization and depolymerization processes. Under low-ion conditions, it assumes a folded structure like muscle myosins and forms thick filaments through polymerization. In our study, we presented intermediate structures observed during the early stages of polymerization of purified myosin via negative staining electron microscopy, immediately crosslinked with glutaraldehyde at the onset of polymerization. We identified folded monomers, dimers, and tetramers in the process. Our findings suggest that Dictyostelium myosin II follows a polymerization pathway in vitro akin to muscle myosin, with folded monomers forming folded parallel and antiparallel dimers that subsequently associate to create folded tetramers. These folded tetramers eventually unfold and associate with other tetramers to produce long filaments. Furthermore, our research revealed that ATP influences filament size, reducing it regardless of the status of RLC phosphorylation while significantly increasing the critical polymerization concentrations from 0.2 to 9 nM. In addition, we demonstrate the morphology of fully matured Dictyostelium myosin II filaments.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Polimerização , Miosinas/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto/metabolismo , Polímeros
6.
Dev Cell ; 59(5): 645-660.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38325371

RESUMO

Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.


Assuntos
Dictyostelium , Animais , Dictyostelium/metabolismo , Pinocitose/fisiologia , Citoplasma , Núcleo Celular , Fatores de Transcrição/metabolismo , Mamíferos
7.
Traffic ; 25(1): e12925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272448

RESUMO

Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.


Assuntos
Dictyostelium , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Sinais Direcionadores de Proteínas , Glicoproteínas de Membrana Associadas ao Lisossomo/genética
8.
Adv Mater ; 36(4): e2306704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947789

RESUMO

Cells rely on secreted signaling molecules to coordinate essential biological functions including development, metabolism, and immunity. Unfortunately, such signaling processes remain difficult to measure with sufficient chemical specificity and temporal resolution. To address this need, an aptamer-conjugated hydrogel matrix that enables continuous fluorescent measurement of specific secreted analytes - in two dimensions, in real-time is developed. As a proof of concept, real-time imaging of inter-cellular cyclic adenosine 3',5'-monophosphate (cAMP) signals in Dictyostelium discoideum amoeba cells is performed. A set of aptamer switches that generate a rapid and reversible change in fluorescence in response to cAMP signals is engineered. By combining multiple switches with different dynamic ranges, measure cAMP concentrations spanning three orders of magnitude in a single experiment can be measured. These sensors are embedded within a biocompatible hydrogel on which cells are cultured and their cAMP secretions can be imaged using fluorescent microscopy. Using this aptamer-hydrogel material system, the first direct measurements of oscillatory cAMP signaling that correlate closely with previous indirect measurements are achieved. Using different aptamer switches, this approach can be generalized for measuring other secreted molecules to directly visualize diverse extracellular signaling processes and the biological effects that they trigger in recipient cells.


Assuntos
AMP Cíclico , Dictyostelium , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Dictyostelium/metabolismo , Hidrogéis/metabolismo , Transdução de Sinais , Adenosina/metabolismo , Oligonucleotídeos
9.
Mol Microbiol ; 121(1): 69-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017607

RESUMO

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Assuntos
Dictyostelium , Humanos , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Pseudomonas aeruginosa/metabolismo , Fagossomos/metabolismo , Neutrófilos , Antibacterianos/metabolismo , Bactérias
10.
Mol Biol Cell ; 35(1): ar7, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910203

RESUMO

Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear whether these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.


Assuntos
Dictyostelium , Lamina Tipo A , Proteínas de Protozoários , Animais , Camundongos , Núcleo Celular/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Laminas/metabolismo , Mamíferos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Methods Mol Biol ; 2746: 1-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070076

RESUMO

The mitochondria are essential to eukaryotic life, acting as key drivers of energy generation while also being involved in the regulation of many cellular processes including apoptosis, cell proliferation, calcium homeostasis, and metabolism. Mitochondrial diseases which disrupt these processes lead to a diverse range of pathologies and lack consistency in symptom presentation. In disease, mitochondrial activity and energy homeostasis can be adapted to cellular requirements, and studies using Dictyostelium and human lymphoblastoid cell lines have shown that such changes can be facilitated by the key cellular and energy regulators, TORC1 and AMPK. Fluorescence-based assays are increasingly utilized to measure mitochondrial and cell signalling function in mitochondrial disease research. Here, we describe a streamlined method for the simultaneous measurement of mitochondrial mass, membrane potential, and reactive oxygen species production using MitoTracker Green™ FM, MitoTracker Red™ CMXRos, and DCFH-DA probes. This protocol has been adapted for both Dictyostelium and human lymphoblastoid cell lines. We also describe a method for assessing TORC1 and AMPK activity simultaneously in lymphoblastoid cells. These techniques allow for the characterization of mitochondrial defects in a rapid and easy to implement manner.


Assuntos
Dictyostelium , Doenças Mitocondriais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Dictyostelium/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fenótipo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
12.
Life Sci ; 335: 122278, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981227

RESUMO

AIMS: Differentiation-inducing factor-1 (DIF-1), a compound in Dictyostelium discoideum, exhibits anti-cancer effects by inhibiting cell proliferation and motility of various mammalian cancer cells in vitro and in vivo. In addition, DIF-1 suppresses lung colony formation in a mouse model, thus impeding cancer metastasis. However, the precise mechanism underlying its anti-metastatic effect remains unclear. In the present study, we aim to elucidate this mechanism by investigating the adhesion of circulating tumor cells to blood vessels using in vitro and in vivo systems. MAIN METHODS: Melanoma cells (1.0 × 105 cells) were injected into the tail vein of 8-week-old male C57BL/6 mice after administration of DIF-1 (300 mg/kg per day) and/or lipopolysaccharide (LPS: 2.5 mg/kg per day). To investigate cell adhesion and molecular mechanisms, cell adhesion assay, western blotting, immunofluorescence staining, and flow cytometry were performed. KEY FINDINGS: Intragastric administration of DIF-1 suppressed lung colony formation. DIF-1 also substantially inhibited the adhesion of cancer cells to human umbilical vein endothelial cells. Notably, DIF-1 did not affect the expression level of adhesion-related proteins in cancer cells, but it did decrease the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells by suppressing its mRNA-to-protein translation through inhibition of mTORC1-p70 S6 kinase signaling. SIGNIFICANCE: DIF-1 reduced tumor cell adhesion to blood vessels by inhibiting mTORC1-S6K signaling and decreasing the expression of adhesion molecule VCAM-1 on vascular endothelial cells. These findings highlight the potential of DIF-1 as a promising compound for the development of anti-cancer drugs with anti-metastatic properties.


Assuntos
Dictyostelium , Molécula 1 de Adesão de Célula Vascular , Camundongos , Animais , Masculino , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Dictyostelium/metabolismo , Camundongos Endogâmicos C57BL , Proteínas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Diferenciação Celular , Adesão Celular , Mamíferos/metabolismo
13.
Cell Biochem Funct ; 41(8): 1514-1525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014740

RESUMO

Nutrient-sensing plays a crucial role in maintaining cellular energy and metabolic homeostasis. Perturbations in sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Very little is understood about sensing fluctuations in nutrients and how this information is integrated into physiological and metabolic adaptation that could further affect cell-fate decisions during differentiation in Dictyostelium discoideum (henceafter, Dictyostelium). Glucose is the primary metabolic fuel among all nutrients. Carbohydrates, lipids and proteins ultimately breakdown into glucose, which is further used for providing energy. The maintenance of optimum glucose levels is important for efficient cell-survival. Glucose is not only a nutrient, but also a signaling molecule influencing cell growth and differentiation in Dictyostelium. Modulation of endogenous glucose levels either by varying exogenous glucose levels or genetic overexpression or deletion of genes involved in glucose signaling lead to changes in endogenous metabolite levels such as ADP/ATP ratio, NAD+ /NADH ratio, cAMP and ROS levels which further influence cell-fate decisions. Here, we show that AMPKα and Sir2D are components of glucose-signaling pathway in Dictyostelium which adjust cell metabolism interdependently in response to nutrient-status and promote cell-fate decisions.


Assuntos
Dictyostelium , Dictyostelium/genética , Dictyostelium/metabolismo , Transdução de Sinais , Diferenciação Celular , Ciclo Celular , Glucose/metabolismo
14.
Curr Opin Cell Biol ; 85: 102267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871500

RESUMO

Lamins are nuclear intermediate filament proteins with important, well-established roles in humans and other vertebrates. Lamins interact with DNA and numerous proteins at the nuclear envelope to determine the mechanical properties of the nucleus, coordinate chromatin organization, and modulate gene expression. Many of these functions are conserved in the lamin homologs found in basal metazoan organisms, including Drosophila and Caenorhabditis elegans. Lamin homologs have also been recently identified in non-metazoans, like the amoeba Dictyostelium discoideum, yet how these proteins compare functionally to the metazoan isoforms is only beginning to emerge. A better understanding of these distantly related lamins is not only valuable for a more complete picture of eukaryotic evolution, but may also provide new insights into the function of vertebrate lamins.


Assuntos
Dictyostelium , Humanos , Animais , Laminas/metabolismo , Dictyostelium/metabolismo , Membrana Nuclear/metabolismo , Drosophila/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Caenorhabditis elegans/metabolismo , Lâmina Nuclear/metabolismo
15.
Genes Cells ; 28(12): 845-856, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844904

RESUMO

Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.


Assuntos
Actomiosina , Dictyostelium , Actomiosina/metabolismo , Actinas/metabolismo , Dictyostelium/metabolismo , Citoesqueleto de Actina/metabolismo , Citocinese , Miosina Tipo II/metabolismo
16.
BMC Ecol Evol ; 23(1): 60, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803310

RESUMO

BACKGROUND: Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores. We here investigated how this role for c-di-GMP evolved in Dictyostelia by exploring dgcA function in the group 2 species Polysphondylium pallidum (Ppal) and in Polysphondylium violaceum (Pvio), which resides in a small sister clade to group 4. RESULTS: Similar to Ddis, dgcA is upregulated after aggregation in Ppal and Pvio and predominantly expressed in the anterior region and stalks of emerging fruiting bodies. DgcA null mutants in Ppal and Pvio made fruiting bodies with very long and thin stalks and only few spores and showed delayed aggregation and larger aggregates, respectively. Ddis dgcA- cells cannot form stalks at all, but showed no aggregation defects. The long, thin stalks of Ppal and Pvio dgcA- mutants were also observed in acaA- mutants in these species. AcaA encodes adenylate cyclase A, which mediates the effects of c-di-GMP on stalk induction in Ddis. Other factors that promote stalk formation in Ddis are DIF-1, produced by the polyketide synthase StlB, low ammonia, facilitated by the ammonia transporter AmtC, and high oxygen, detected by the oxygen sensor PhyA (prolyl 4-hydroxylase). We deleted the single stlB, amtC and phyA genes in Pvio wild-type and dgcA- cells. Neither of these interventions affected stalk formation in Pvio wild-type and not or very mildly exacerbated the long thin stalk phenotype of Pvio dgcA- cells. CONCLUSIONS: The study reveals a novel role for c-di-GMP in aggregation, while the reduced spore number in Pvio and Ppal dgcA- is likely an indirect effect, due to depletion of the cell pool by the extended stalk formation. The results indicate that in addition to c-di-GMP, Dictyostelia ancestrally used an as yet unknown factor for induction of stalk formation. The activation of AcaA by c-di-GMP is likely conserved throughout Dictyostelia.


Assuntos
Dictyosteliida , Dictyostelium , Dictyostelium/genética , Dictyostelium/metabolismo , Amônia/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Dictyosteliida/metabolismo , Oxigênio/metabolismo
17.
Eur J Cell Biol ; 102(4): 151361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742391

RESUMO

Major facilitator superfamily domain-containing protein 8 (MFSD8) is a transmembrane protein that has been reported to function as a lysosomal chloride channel. In humans, homozygous mutations in MFSD8 cause a late-infantile form of neuronal ceroid lipofuscinosis (NCL) called CLN7 disease. In the social amoeba Dictyostelium discoideum, Mfsd8 localizes to cytoplasmic puncta and vesicles, and regulates conserved processes during the organism's life cycle. Here, we used D. discoideum to examine the effect of mfsd8-deficiency on the secretome during the early stages of multicellular development. Mass spectrometry revealed 61 proteins that were differentially released by cells after 4 and 8 h of starvation. Most proteins were present in increased amounts in mfsd8- conditioned buffer compared to WT indicating that loss of mfsd8 deregulates protein secretion and/or causes the release of proteins not normally secreted by WT cells. GO term enrichment analyses showed that many of the proteins aberrantly released by mfsd8- cells localize to compartments and regions of the cell associated with the endo-lysosomal and secretory pathways. Mass spectrometry also revealed proteins previously known to be impacted by the loss of mfsd8 (e.g., cathepsin D), as well as proteins that may underlie mfsd8-deficiency phenotypes during aggregation. Finally, we show that mfsd8-deficiency reduces intracellular proteasome 20S activity due to the abnormal release of at least one proteasomal subunit. Together, this study reveals the impact of mfsd8 loss on the secretome during D. discoideum aggregation and lays the foundation for follow up work that investigates the role of altered protein release in CLN7 disease.


Assuntos
Dictyostelium , Humanos , Dictyostelium/genética , Dictyostelium/metabolismo , Secretoma , Proteínas de Membrana/metabolismo , Mutação , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
18.
Anal Bioanal Chem ; 415(26): 6481-6490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37682313

RESUMO

Single-cell measurements routinely demonstrate high levels of variation between cells, but fewer studies provide insight into the analytical and biological sources of this variation. This is particularly true of chemical cytometry, in which individual cells are lysed and their contents separated, compared to more established single-cell measurements of the genome and transcriptome. To characterize population-level variation and its sources, we analyzed oxidative stress levels in 1278 individual Dictyostelium discoideum cells as a function of exogenous stress level and cell cycle position. Cells were exposed to varying levels of oxidative stress via singlet oxygen generation using the photosensitizer Rose Bengal. Single-cell data reproduced the dose-response observed in ensemble measurements by CE-LIF, superimposed with high levels of heterogeneity. Through experiments and data analysis, we explored possible biological sources of this heterogeneity. No trend was observed between population variation and oxidative stress level, but cell cycle position was a major contributor to heterogeneity in oxidative stress. Cells synchronized to the same stage of cell division were less heterogeneous than unsynchronized cells (RSD of 37-51% vs 93%), and mitotic cells had higher levels of reactive oxygen species than interphase cells. While past research has proposed changes in cell size during the cell cycle as a source of biological noise, the measurements presented here use an internal standard to normalize for effects of cell volume, suggesting a more complex contribution of cell cycle to heterogeneity of oxidative stress.


Assuntos
Dictyostelium , Microfluídica , Dictyostelium/metabolismo , Ciclo Celular , Estresse Oxidativo , Divisão Celular
19.
Mol Biol Cell ; 34(13): ar128, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729017

RESUMO

Although the RAS oncogene has been extensively studied, new aspects concerning its role and regulation in normal biology and cancer continue to be discovered. Recently, others and we have shown that the mechanistic Target of Rapamycin Complex 2 (mTORC2) is a Ras effector in Dictyostelium and mammalian cells. mTORC2 plays evolutionarily conserved roles in cell survival and migration and has been linked to tumorigenesis. Because RAS is often mutated in lung cancer, we investigated whether a Ras-mTORC2 pathway contributes to enhancing the migration of lung cancer cells expressing oncogenic Ras. We used A549 cells and CRISPR/Cas9 to revert the cells' KRAS G12S mutation to wild-type and establish A549 revertant (REV) cell lines, which we then used to evaluate the Ras-mediated regulation of mTORC2 and cell migration. Interestingly, our results suggest that K-Ras and mTORC2 promote A549 cell migration but as part of different pathways and independently of Ras's mutational status. Moreover, further characterization of the A549REV cells revealed that loss of mutant K-Ras expression for the wild-type protein leads to an increase in cell growth and proliferation, suggesting that the A549 cells have low KRAS-mutant dependency and that recovering expression of wild-type K-Ras protein increases these cells tumorigenic potential.


Assuntos
Dictyostelium , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Genes ras , Células A549 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Dictyostelium/metabolismo , Proliferação de Células , Mutação/genética , Linhagem Celular Tumoral , Mamíferos/metabolismo
20.
Biophys J ; 122(16): 3386-3394, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37488927

RESUMO

Circular actin waves that propagate on the substrate-attached membrane of Dictyostelium cells separate two distinct membrane domains from each other: an inner territory rich in phosphatidyl-(3,4,5) trisphosphate (PIP3) and an external area decorated with the PIP3-degrading 3-phosphatase PTEN. During wave propagation, the inner territory increases at the expense of the external area. Beyond a size limit, the inner territory becomes unstable, breaking into an inner and an external domain. The sharp boundary between these domains is demarcated by the insertion of an actin wave. During the conversion of inner territory to external area, the state of the membrane fluctuates, as visualized by dynamic landscapes of formin B binding. Here we analyze the formin B fluctuations in relation to three markers of the membrane state: activated Ras, PIP3, and PTEN.


Assuntos
Actinas , Dictyostelium , Actinas/metabolismo , Forminas/metabolismo , Dictyostelium/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto de Actina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...